On the tree number of regular graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the total domatic number of regular graphs

‎a set $s$ of vertices of a graph $g=(v,e)$ without isolated vertex‎ ‎is a {em total dominating set} if every vertex of $v(g)$ is‎ ‎adjacent to some vertex in $s$‎. ‎the {em total domatic number} of‎ ‎a graph $g$ is the maximum number of total dominating sets into‎ ‎which the vertex set of $g$ can be partitioned‎. ‎we show that the‎ ‎total domatic number of a random $r$-regular graph is almost‎...

متن کامل

On the fixed number of graphs

‎A set of vertices $S$ of a graph $G$ is called a fixing set of $G$‎, ‎if only the trivial automorphism of $G$ fixes every vertex in $S$‎. ‎The fixing number of a graph is the smallest cardinality of a fixing‎ ‎set‎. ‎The fixed number of a graph $G$ is the minimum $k$‎, ‎such that ‎every $k$-set of vertices of $G$ is a fixing set of $G$‎. ‎A graph $G$‎ ‎is called a $k$-fixed graph‎, ‎if its fix...

متن کامل

On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

The Chromatic Number of Random Regular Graphs

Given any integer d ≥ 3, let k be the smallest integer such that d < 2k log k. We prove that with high probability the chromatic number of a random d-regular graph is k, k + 1, or k + 2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1997

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(96)00193-8